Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Most freshwater habitats have been substantially affected by anthropogenic factors such as fish introductions, plastic pollution, and river regulation. Urban rivers are highly vulnerable to impacts associated with land use changes resulting from increasing urbanization, including altering habitat and establishing aquatic biological communities in these areas. In turn, the introduction of exotic species into sensitive and threatened ecosystems such as tropical urban streams and their rapid establishment, such asPterygoplichthys multiradiatus, was used as an ecological model to determine the relative population size of the species. Also, the species was used to evaluate the presence of microplastics (MPs) in the gastrointestinal tract (GIT) of fish in rivers with different land use history. Our results showed significant differences in pleco abundance between areas with high and low urban (LU) development in the watersheds. The study demonstrated that abiotic environmental factors directly influence the relative abundance of plecos at the range and watershed scales. In a total of 42 fish examined, only 85.7% showed MPs retained in the GIT, with fibers and fragments being the most common. A total of 22 pieces of microplastic were identified with Nile Red staining by slide analysis. A significant difference was found between the abundance of microplastic ingested per total fish length between streams with high and LU development reaches. Therefore, in relatively small amounts, microplastic ingestion appears to be common inP. multiradiatusspecies, regardless of the habitat in which they are found and the diet present.more » « less
-
Titanium dioxide is a type of nanoparticle that is composed of one titanium atom and two oxygen atoms. One of its physicochemical activities is photolysis, which produces different reactive oxygen species (ROS). Atya lanipes shrimp affect detrital processing and illustrate the potential importance of diversity and nutrient availability to the rest of the food web. It is essential in removing sediments, which have an important role in preventing eutrophication. This study aimed to determine the toxic effect of changes in behavior and levels of oxidative stress due to exposure to titanium dioxide nanoparticles in Atya lanipes and to determine the effective concentration (EC50) for behavioral variables. The concentrations of TiO2 NPs tested were 0.0, 0.50, 1.0, 2.0, and 3.0 mg/L with the positive controls given 100 µg/L of titanium and 3.0 mg/L of TiO2 NPs ± 100 µg/L of titanium. After 24 h of exposure, significant hypoactivity was documented. The EC50 was determined to be a concentration of 0.14 mg/L. After the exposure to 10 mg/L of TiO2 NPs, oxidative stress in gastrointestinal and nervous tissues was documented. The toxic effects of this emerging aquatic pollutant in acute exposure conditions were characterized by sublethal effects such as behavior changes and oxidative stress.more » « less
-
Nanoparticles are man-made materials defined as materials smaller than 100 nm in at least one dimension. Titanium oxide nanoparticles are of great interest because of their extensive use in self-care products. There is a lack of nanotoxicological studies of TiO2 NPs in benthic organisms to have evidence about the effects of these pollutants in freshwater ecosystems. Atya lanipes is a scraper/filter that can provide a good nanotoxicological model. This study aims to determine how the TiO2 NPs can develop a toxic effect in the larvae of the Atya lanipes shrimp and to document lethal and sublethal effects after acute exposures to TiO2 NP suspensions of: 0.0, 1.0, 10.0, 50.0, 100.0, and 150.0 mg/L. The results show that early exposure to TiO2 NPs in Atya lanipes creates an increase in mortality at 48 and 72 h exposures, hypoactivity in movements, and morphological changes, such as less pigmentation and the presence of edema in exposed larvae. In conclusion, TiO2 NPs are toxic contaminants in the larval stage of the Atya lanipes. It is necessary to regulate these nanoparticles for purposes of the conservation of aquatic biodiversity, especially for freshwater shrimp larvae and likely many other larvae of filter-feeding species.more » « less
An official website of the United States government
